Third Semester: Electronics Circuits

	For Reading		For Problems
Topic	Chapter	Book	Reference [6]
Unit 1	1.1 - 1.8	[1]	
Diode Circuits: Ideal diode, piecewise linear equivalent circuit, dc load line			
analysis, Quiescent (Q) point. Positive, negative and biased clipper circuits,	Chapter-01	[2]	
clamping circuits.			
Unit 1	2.1 – 2.11	[1]	
Half wave rectifier, center tapped and bridge fullwave rectifiers, calculation of	Appendix B	[1]	2.38-2.105
efficiency and ripple factor.	Chapter-01	[2]	3.43-3.84
Filters: types, circuit diagram and explanation of shunt capacitor filter with		'-'	
waveforms.			
Unit 1			=
DC power supply: Block diagram of a power supply, qualitative description of	19.1 – 19.4	[1]	
shunt capacitor filter, Zener diode as voltage regulator, temperature	Chapter-01	[2]	
coefficient of Zener diode.	Chapter 01	[-]	
Unit 2			
The BJT: Transistor current components and amplification. Transistor	3.1 – 3.8	[1]	
configurations: Common Base (CB), Common Emitter (CE) and Common	3.1 3.0	[-]	
Collector (CC) configuration, I-V characteristics and hybrid parameters, regions	Chapter -02	[2]	
of operation, dc load line, Q point.	Chapter -02	رکا	
Unit 2	4.1 – 4.12	[1]	4.1-4.78
CE amplifier: Self bias arrangement of CE, dc and ac load line analysis. Hybrid	7.1 – 7.8		4.86-4.112
equivalent of CE, Quantitative study of the frequency response of CE amplifier,		[1]	6.36-6.89
	8.1 – 8.11	[1]	7.1-7.123
effect on gain and bandwidth for cascaded CE amplifier (RC coupled).	11.1-11.10	[1]	10.1-10.84
	6.1-6.6	[2]	11.1-11.51
11	9.1 and 9.3	[2]	11.1-11.51
Unit 4	464467	[4]	
Power Amplifiers: Heat sink, Classification of power amplifiers: A, B, C and AB,	16.1-16.7	[1]	
analysis of Class B push pull amplifiers (efficiency, power dissipation). Single	5.1-5.5	[2]	
tuned amplifiers.	9.5	[2]	
Unit 3	40.4.40.0	[4]	
Feedback Amplifiers: Concept of feedback, negative and positive feedback,	18.1-18.9	[1]	6-141
Negative feedback: advantages and disadvantages of negative feedback,			Selected
voltage (series and shunt), current (series and shunt) feedback amplifiers,			Problems of
derivation of gain, input and output impedances for feedback amplifiers.			Chapter-12
Positive feedback: Barkhausen criteria for oscillations, Study of phase shift			
oscillator and Colpitts oscillator. Colpitts Crystal oscillator.			
Unit 4	5.1-5.8	[1]	
The MOSFET: The three configurations: Common Gate (CG), Common Source	6.5-6.7	[1]	
(CS) and Common Drain (CD), I-V characteristics, regions of operation, small	9.1-9.11	[1]	
signal equivalent circuit, dc load line, Q point.	11.1-11.10	[1]	5.1-5.90
CS amplifier: CS amplifier circuit analysis, Qualitative study of frequency	3.1-3.6	[2]	
response of CS amplifier.	6.7-6.10	[2]	
	9.2 and 9.4	[2]	

Suggested Text Books:

- 1. R. L. Boylestad, L. Nashelsky, K. L. Kishore, Electronic Devices and Circuit Theory, Pearson Education (2006)
- 2. D. L. Schilling, C. Belove, Tuvia Apelewicz and Raymond J Saccardi, Electronic Circuits: Discrete and Integrated, Tata McGraw Hill (2002)

Suggested Reference Books:

- 3. J. R. C. Jaegar and T. N. Blalock, Microelectronic Circuit Design, Tata McGraw Hill (2010)
- 4. J. Millman and C. C. Halkias, Integrated Electronics, Tata McGraw Hill (2001)
- 5. Donald A. Neamen, Electronic Circuit Analysis and Design, Tata McGraw Hill (2002)

Suggested Book for Problem Soving:

6. J. J. Cathey, 2000 Solved Problems in Electronics, Schaum's outline Series, Tata McGraw Hill (1991)